gentzen

Help with Subset Derivation: Short Rewrite Version

Topic
Logical System

1/9/09

Help with Subset Derivations [Short form example]

There is a shorter and quicker proof using rewrite rules. Ordinarily there is a lot of messing around with instantiating quantifiers, renaming bound variables, etc.. Rewrite rules avoid much of this (and so we can concentrate on Set Theory). You might want to remind yourself of Rewrite Rules and its video.

Tutorial 7: Set Theory II: Subsets, Empty Set, Universe Set

Topic
Logical System
12/25/20

There is the notion that whenever an element is a member of one set then it is also a member of a second set. When this occurs the first set is said to be a subset of the second, and this is denoted by the symbol '⊂' . There is an axiom covering this

(x⊂y) ≡(∀z)(zεx⊃zεy)     Axiom of Subsets

In English this says, 'x is a subset of y if, and only if, All z, if z is a member of x then z is also a member of y' .

Tutorial 9: Set Theory IV: Ordered Pairs, Cross Products

Topic
Logical System
12/27/20

Order and Ordered pairs

Thus far nothing we have done has order in it. We are definitely going to need the notion order, both for mathematics and everything else. In mathematics, on a simple two dimensional graph the point with x=1 and y=2 is not the same as the point with x=2 and y=1. In the world at large John being taller than Jane is not the same as Jane being taller than John. Set theory is going to need an approach to order.

Tutorial 8: Set Theory III: Union, Intersection, Complement, Unordered Pairs, Power Set

Topic
Logical System
12/15/20

With two sets, say x and y, there are various ways they can be put together.

There is the union of the two sets, symbolized with ∪, which the set formed when elements are members of one set or the other

zε(x∪y) ≡ (zεx∨zεy)      Axiom of Union

zε(x∪y) :: (zεx∨zεy)       Union Rewrite

There is the intersection of the two sets, symbolized with ∩, which the set formed when elements are members of one set and the other

Tutorial 5: Number Theory II

Topic
Logical System
12/23/20

Tutorial 5: Number Theory II

Formal Number Theory. Just more theorems for you.

Recall

Formal Number Theory has five proper symbols {=,',+, .,0} and six proper axioms

(∀x)(∀y)(x'=y'⊃x=y),
(∀x)~(x'=0),
(∀x)(x+0=x),
(∀x)(∀y)(x+y'=(x+y)'),
(∀x)(x.0=0),
(∀x)(∀y)(x.y'=x.y+x)

And the axiom (metalanguage) schema of induction. If φ[n] is any formula in the object language with free variable n then

(φ[0]∧(∀n)(φ[n]⊃φ[n'])) ⊃ (∀n)φ[n]

Tutorial 3 Identity: Uniqueness, Definite Descriptions, Iota

Topic
Logical System
12/30/20

Tutorial 3 Identity: Uniqueness, Definite Descriptions, Iota

2013

Skills to be acquired in this tutorial:

To learn about the Uniqueness quantifier (a part of identity), and to be introduced to definite descriptions.

Why this is useful:

Uniqueness is central in mathematics, and definite descriptions is a core area in philosophical logic.